
EL-SEC: ELastic Management of SECurity
Applications on Virtualized Infrastructure

Nabeel Akhtar∗, Ibrahim Matta∗, Ali Raza∗ and Yuefeng Wang†
∗Boston University, Boston, USA †Akamai Technologies, Inc., Cambridge, USA

{nabeel, matta, araza, wyf}@bu.edu
Abstract—The concept of Virtualized Network Functions

(VNFs) aims to move Network Functions (NFs) out of dedicated
hardware devices into software that runs on commodity hard-
ware. A single NF consists of multiple VNF instances, usually
running on virtual machines in a cloud infrastructure. The elastic
management of an NF refers to load management across the
VNF instances and the autonomic scaling of the number of
VNF instances as the load on the NF changes. In this paper, we
present EL-SEC, an autonomic framework to elastically manage
security NFs on a virtualized infrastructure. As a use case,
we deploy the Snort Intrusion Detection System as the NF on
the GENI testbed. Concepts from control theory are used to
create an Elastic Manager, which implements various controllers
– in this paper, Proportional Integral (PI) and Proportional
Integral Derivative (PID) – to direct traffic across the VNF
Snort instances by monitoring the current load. RINA (a clean-
slate Recursive InterNetwork Architecture) is used to build a
distributed application that monitors load and collects Snort
alerts, which are processed by the Elastic Manager and an Attack
Analyzer, respectively. Software Defined Networking (SDN) is
used to steer traffic through the VNF instances, and to block
attack traffic. Our results show that virtualized security NFs can
be easily deployed using our EL-SEC framework. With the help
of real-time graphs, we show that PI and PID controllers can be
used to easily scale the system, which leads to quicker detection
of attacks.

I. INTRODUCTION

Network Function Virtualization (NFV) has gained tremen-
dous attention from the research community and industry. The
idea of moving Network Functions (NFs) implemented by
middleboxes (hardware appliances) from the user premises to
a cloud infrastructure was proposed by Sherry et al. [1]. Their
study of enterprise networks shows that middleboxes are a core
part of the network infrastructure, where the number of mid-
dleboxes is at par with the number of routers in the network.
Enterprises spend large sums of money buying proprietary
hardware appliances, which are hard to upgrade and require
a great deal of resources. Moreover, they showed that for
most common middleboxes, i.e. firewalls, intrusion detection
systems, and proxies, at least 32.6% of the failures are caused
by overload or physical/electric failure. Moving middleboxes
as Virtualized Network Functions (VNFs) running on a cloud
infrastructure can greatly reduce the high capital and op-
erational expenses while simplifying the configuration and
deployment of VNFs. Moreover, failovers can be realized in a
cloud environment through redundant resources [1]. However,
moving NFs to a virtualized infrastructure introduces a new
set of challenges, e.g., state consistency, elastic management
and monitoring of VNF instances. The resources in virtualized
infrastructures need to be elastically managed using scaling
to fulfill the system demand while keeping the cost low.
Scaling can be classified as vertical scaling or horizontal
scaling. Vertical scaling refers to the ability to add/remove
allocated resources for existing VNF instances, such as CPU

Yuefeng Wang’s work was done while he was at Boston University.

capacity, storage, and memory. Horizontal scaling refers to the
ability to add/remove VNF instances. In this work, we focus
on horizontal scaling, i.e., VNF instances are added/removed
based on the changing load on the system.

In this paper, we present EL-SEC, a framework for deploy-
ing security network functions on virtualized infrastructures.
As a use case, we deploy the Snort Intrusion Detection System
(IDS) as the NF on the GENI testbed [2]. In EL-SEC, the
state of the VNF instances is shared with an elastic manager
and an attack analyzer. The elastic manager balances the
load across VNF instances and adds/deletes VNF instances
to avoid overload conditions. The attack analyzer maintains
a global state of the NF and intelligently creates a list of
attackers that should be blocked. A forwarding controller
updates the forwarding rules in the network to direct traffic
to VNF instances, and to drop traffic from malicious hosts.
Our contributions in this paper are summarized below:

• We propose EL-SEC, a framework for deploying virtual
network security functions on a virtualized infrastructure.

• As a use case, we deploy Snort IDS using EL-SEC on a
virtualized infrastructure provided by the GENI testbed.

• We implement elastic management using concepts from
control theory. Our results show that the system can be
elastically managed using a PI or PID load controller and
attacks are quickly detected.

• We use RINA [3], a clean slate internet architecture, to
develop a distributed monitoring application for the EL-
SEC. The application collects load and Snort alerts using
a publish-subscribe architecture.

• We implement an attack analyzer that maintains a global
state of the traffic by collecting Snort alerts from the VNF
instances.

Moreover, our implementation on the GENI testbed demon-
strates that GENI is capable of supporting a wide range of
experiments.

In the initial version of this work [4], we showed that
control theory can be used to balance the load across two
VNF instances. This paper expands [4] in many significant
ways:

• Our previous work compares a PI-based load balanc-
ing controller to a load-oblivious Round Robin based
controller. In this work, we propose an elastic manager
that is not only responsible for load balancing but also
responsible for auto-scaling VNF instances. The elastic
manager is generalizable to any auto-scaler, i.e., we are
not limited to PI/PID controllers.

• In this work, we generalize the problem to more than two
VNF instances.

• Our previous work did not include attack detection. In
this work, we include an attack analyzer module to detect
attacks on the system.

• We propose EL-SEC, a generic framework for deploying

C
lo

ud
 In

fr
as

tru
ct

ur
e

V
irt

ua
liz

at
io

n
La

ye
r

Destination Network

VNF-1

VNF-2

VNF-N

…

User Applications

Embedding

Physical link
Logical link

Application Data

Elastic
Manager

Attack
AnalyzerM

on
ito

rin
g

A
pp

lic
at

io
n

Fo
rw

ar
di

ng
 C

on
tro

lle
r

EL-SEC SYSTEM OVERVIEW

VNF Load
Information

Security
Application
State Info.

Forwarding rules to balance load and to block attack traffic

Load
Balancing

User Generated Flows to
Destination Network

VNF
Information

Attacker
Information

add/delete VNF Instances

Security App.
VNF Instances

Fig. 1: EL-SEC system overview

security NFs on cloud infrastructures.
• We also implement a PID controller, along with a PI

controller, to compare PI and PID control.
• We provide performance metrics related to auto-scaling

and attack detection time. In our previous work, we only
demonstrated load balancing using a PI controller.

Related work, such as StatelessNF [5], OpenNF [6],
Split/Merge [7], focuses on state consistency issues that arise
due to flow migration and NF split/merge without giving
details on how the resources are auto-scaled. Our work pro-
poses and implements a complete VNF elastic deployment
framework that addresses key challenges, including state con-
sistency, auto-scaling, resource monitoring and flow migration.

The rest of the paper is organized as follows. Section II
provides an overview of our EL-SEC framework. Section III
describes a use case for EL-SEC where we deploy Snort
IDS as VNF on the GENI testbed. Section IV explains the
experimental setup. Section V presents our results. Section VI
gives information on the reproducibility of our results and
discusses experimental challenges. Section VII concludes the
paper with a summary and future work.

II. EL-SEC OVERVIEW

This section provides an overview of EL-SEC and describes
each component of our framework. EL-SEC aims to provide
a framework for deploying security network functions on a
cloud infrastructure. Moving resources from local premises to
a cloud environment brings a new set of challenges, which
includes constant monitoring of VNF instances, dynamically
adding/deleting resources, balancing the load across the VNF
instances, analyzing the system state to detect attacks and
be resilient to system failures. EL-SEC facilitates security
VNF deployment by addressing these key challenges. Figure 1
provides an overview of the system. User-generated flows tra-
verse through security VNF instances (e.g., firewall, intrusion
detection system, etc.) running on a cloud infrastructure before
reaching the destination network. The cloud infrastructure
features an SDN enabled network, where the network can be
programmed using common interfaces, such as OpenFlow [8].
To manage these security VNFs, we integrate EL-SEC with
the system. In EL-SEC, a Monitoring Application gathers the
state of the VNFs and provides this information to an Elastic
Manager and Attack Analyzer. The Elastic Manager gets the
VNF load information and balances the load across the VNF
instances by providing a Forwarding Controller with load

balancing directives. It also adds/deletes VNF instances based
on the load on the current VNF instances. The Attack Analyzer
gets information on the state of the security VNF instances
(e.g., traffic patterns, traffic alerts, etc.) from the Monitoring
Application and identifies malicious hosts. The components of
our EL-SEC framework are explained in detail next.

A. Monitoring Application

The Monitoring Application gathers the state of the VNF
instances and shares it with different components of EL-
SEC. The security VNF needs to share two important pieces
of information with EL-SEC: i) a measure of load (e.g.,
CPU load, traffic load or average packet delay) on the VNF
instances, and ii) the application state of the VNF instances
(e.g., traffic patterns or intrusion alerts). The load of the
VNF instances is used by the Elastic Manager to distribute
load and add/delete VNF instances. The security application
VNF instances share their state with a central entity (Attack
Analyzer) to accurately and quickly detect attacks.

B. Elastic Manager

The Elastic manager is the heart of the system. It is
responsible for balancing load and elastically scaling the VNF
instances needed by the security NF. It gets the load of
the VNF instances from the Monitoring Application. Note
that simple round-robin balancers can be used to distribute
load across the VNF instances. However, as we have shown
in our previous work [4], load balancers based on control
theory perform much better when compared with traditionally
used round-robin techniques. The Elastic Manager calculates
the ratio of traffic that should be diverted to different VNF
instances. This information is shared with the Forwarding
Controller, which then updates the traffic forwarding rules.

As the load on the system changes, the Elastic Manager is
responsible for adding/removing VNF instances such that the
minimal number of VNF instances are used while keeping the
VNF instances from getting overloaded.

C. Attack Analyzer

The Attack Analyzer aims to keep the global application
state of the VNF instances. Since traffic is distributed across
the VNF instances, it is important to keep a global state of the
VNF instances to accurately and quickly detect attack traffic
and to maintain the application state of the NF in case of VNF
instance’s failure. Different techniques have been proposed for

Attack
Analyzer

OVS
controller

Attacker list

OVS
rules

Controller

PI/PID
Controllers

Load balancing info

VNF-1

SNORT
IDS

VNF-2

SNORT
IDS

VNF-3

SNORT
IDS

VNF-4

SNORT
IDS

RIB

RINA App

RIB

RINA App

RIB

RINA App

RIB

RINA App

RIB

RINA App

VNFs CPU load info

Snort Alerts

CDAP

RINA Monitoring
Application

DAF

EL-SEC on GENI Testbed

Resources on testbed

Fig. 2: EL-SEC use case: IDS on the GENI testbed

the stateful implementation of an NF. These techniques range
from logging packet-level state information (e.g., Stateless-
NFs [5]) to event-based logging (e.g., FTMB [9]). The EL-
SEC framework is capable of supporting different techniques
for VNF state management. Note that the Attack Analyzer
is a centralized entity that has a global picture of the VNF
instances and it can run different kinds of analysis (e.g.,
machine learning) on traffic patterns to accurately and quickly
detect and stop attack traffic.

D. Forwarding Controller

The Forwarding Controller is used to update the forwarding
rules to either balance load across the VNF instances or to drop
traffic from attacking hosts. The Forwarding Controller gets
VNF load balancing directives from the Elastic Manager and
the list of attackers from the Attack Analyzer. Note that for an
SDN enabled network, the Forwarding Controller can be an
SDN Controller.

III. USE CASE: INSTANTIATING EL-SEC

In this section, we provide a use case of EL-SEC where
we implement an Intrusion Detection System (IDS), namely
Snort [10], as the VNF on a cloud infrastructure. We imple-
mented the system on the Global Environment for Network
Innovations (GENI) testbed [2]. The overview of the system
is shown in Figure 2. Sources S1 and S2 are used to generate
traffic to a destination, passing through an OpenFlow Virtual
Switch (OVS). Traffic is duplicated on the OVS switch and sent
to off-path VNF instances (VNF1-4) running Snort IDS. The
Controller node is the “brain" of the system and it implements
the EL-SEC framework. A distributed Monitoring Application
running on the Recursive InterNetwork Architecture (RINA)
[3], [11] is used to share VNF state information with other
components of the EL-SEC system. RINA processes are
running on the VNF nodes (along with Snort) to gather VNF
state information and provide it to the Controller node. The
Elastic Manager employs a control theoretic method, i.e.,
Proportional Integral (PI) or Proportional Integral Derivative
(PID) controller, to balance the load across the VNF instances.
It informs the OVS controller of the fractions of traffic that
should be directed to the VNF instances. The OVS controller
then updates OpenFlow rules on the OVS switch to distribute
duplicated traffic accordingly. The Attack Analyzer obtains
Snort alerts from the RINA monitoring application. It ana-
lyzes the Snort alerts and informs the OVS controller about
malicious traffic. The OVS controller updates OpenFlow rules
on the OVS switch to drop all traffic from malicious hosts.

Note that this is our own instantiation/implementation of
the EL-SEC framework using PI/PID controllers, the RINA
monitoring application, Snort IDS, the OVS OpenFlow-based
controller and Attack Analyzer. The modular structure of EL-
SEC enables experimenters to extend/update different compo-
nents of the EL-SEC system to satisfy their needs. EL-SEC
provides a general framework that is capable of supporting a
wide variety of on-path and off-path security virtual network
functions (VNFs). Each component of the implemented system
is explained in detail next.

A. GENI Testbed

GENI (Global Environment for Network Innovations) [2]
is a nationwide suite of infrastructure that enables research
and education in networking and distributed systems. GENI
supports large-scale experimentation with advanced protocols
for data-centers, clouds, mobile and SDN networks, etc. Since
we needed to deploy the system on an edge-cloud system,
GENI was a perfect candidate for it.

B. Snort IDS Application

Snort IDS [10] is an open-source network intrusion de-
tection system. It has the ability to perform real-time traffic
analysis on IP networks. It is one of the most widely deployed
IDSes and it has been previously deployed on virtualized in-
frastructures to detect attacks [12]. We installed Snort on each
VNF instance. We ran Snort in IDS mode to analyze traffic
against the open-source Snort community rule set [10]. Snort
performs deep packet inspection on incoming packets and
generates alerts whenever it detects abnormal traffic. Snort’s
deep packet inspection creates load on the VNF instances, thus
change in incoming traffic changes load on the VNF instances
running Snort. As the load on the system changes, we use
EL-SEC to elastically manage system resources.

C. RINA Monitoring Application

The Monitoring Application collects VNF state information
and shares it with other components of the EL-SEC system.
We used the Recursive InterNetwork Architecture (RINA) [3],
[11] to implement the Monitoring Application for EL-SEC.
RINA is a clean-slate network architecture that overcomes
inherent weaknesses of the current internet, e.g., security and
support for mobility and quality of service. For our system, we
created a RINA monitoring Distributed Application Facility
(DAF) consisting of monitoring processes running on each
VNF instance. The RINA process on the controller node
uses the DAF to get the state (CPU load and Snort alerts)

Fig. 3: Block diagram of the PI-controlled VNF system.
System load L and target load T (s) = T

s of VNF i is used to
compute X , i.e. ratio of traffic diverted to VNF i+ 1

of the VNF instances. Details about RINA and the RINA
monitoring application are explained in our earlier work [4].
Each monitoring application process on the VNF VMs pe-
riodically publishes its VNF load information and any Snort
alerts generated. The RINA application process running on the
controller VM subscribes to this information and passes the
average over the last few measurements to the Elastic Manager
for auto-scaling and load balancing. It also passes Snort alerts
to the Attack Analyzer as soon as it gets the alerts. The Elastic
Manager and Attack Analyzer are explained next.

D. Elastic Manager

The Elastic Manager provides scaling of resources and
balances load across VNF instances. To elastically manage
the resources for the cloud infrastructure, we used control-
theoretic methods, namely a Proportional Integral (PI) or Pro-
portional Integral Derivative (PID) controller, to distribute load
across the VNF instances. The RINA Monitoring Application
provides the PI/PID controller with the current load on the
system. Based on the current load and previous load values,
the PI/PID controller distributes the load across the VNF
instances with the goal of minimizing the number of VNF
instances needed while avoiding overloading any instance. As
traffic changes, the CPU load on the VNF instances running
Snort also changes. The PI/PID controller adds/removes VNF
instances as the CPU load on the VNF instances changes. The
PI and PID controllers are explained in detail next.

1) PI Controller: The Proportional Integral (PI) controller
is a control-theoretic auto-scaler. The block diagram of the PI-
controlled system is shown in Figure 3. Initially, when the load
on the system is low, all traffic is diverted/duplicated to a single
VNF instance running Snort IDS, i.e., VNF1. The current
CPU load Li(t) of VNF i is provided to the PI controller
by the RINA monitoring application. The target CPU load Ti
represents the maximum load allowed on VNF i.

When the current load Li(t) increases beyond its target load
Ti, a fraction of the flows are diverted to VNF i+1 such that
the load on VNF i does not exceed Ti. Assuming the “load
error" at VNF i at time t is ei(t) = Li(t)− Ti, the PI control
equation is given by:

xi+1(t) = xi+1(t− 1) +Ki ei(t) i ≥ 1 (1)

where Ki is the controller’s gain for VNF i, xi+1(t) is the
fraction of new flows directed to VNF instance i + 1 given
previous instances 1, 2, ..., i have reached their target load.

2) PID Controller: The Proportional Integral Derivative
(PID) controller has an additional derivative term of the “load
error". The derivative term predicts system behavior and thus
improves the settling time and stability of the system. The PID
control equation is given by:

xi+1(t) = xi+1(t− 1) +Kp
i ei(t) +Kd

i

(
ei(t)− ei(t− 1)

)
(2)

Parameter Description Value
RINA Monitoring Application

δt
time between consecutive VNF state
information message 200 ms

C
number of measurements taken to
calculate average CPU load 20

PI Controller
T Target CPU load on VNF instances 50 %
K Integral gain 0.1

PID Controller
T Target CPU load on VNF instances 50 %
Ki Integral gain 0.1
Kd Derivative gain 0.1

Ryu Controller
ti idle timeout 4 sec
th hard timeout 4 sec

Traffic Generation (nping)

rp
number of packets per second sent for a
flow 20/sec

sp average packet size for a flow 1400 B
tf average flow lifetime 150 sec

TABLE I: System Parameters

where Kp
i and Kd

i are the proportional and differential con-
troller gains, respectively, for VNF i.

E. Attack Analyzer

The Attack Analyzer uses the application state information
of the security VNF instances to detect attacks on the system.
For our implementation of the Attack Analyzer on the GENI
testbed, we use a log-based approach. Snort-alerts are logged
at the controller node via the RINA monitoring application.
The Attack Analyzer processes the Snort alert logs to detect
attacks and generate a list of attackers (malicious hosts).

The Snort alerts provide a high-level state information of
the VNF instances but do not provide packet-level details of
the system that are sometimes necessary for security VNFs.
However, the EL-SEC framework can support systems like
StatelessNF [5] where packet-level state information can be
collected from the VNF instances via the RINA monitoring
application.

F. OVS Controller

The Open vSwitch (OVS) Controller is responsible for
adding forwarding rules on the OVS switch for incoming
flows. We use the Ryu OpenFlow controller [13] in our
implementation. The OVS controller is responsible for two
types of forwarding rules: i) rules to distribute load across the
VNF instances, and ii) rules to block IP addresses associated
with attackers. The OVS controller is provided load balancing
directives by the Elastic Manager implementing the PI/PID
controller. For each new flow, the OVS switch asks the OVS
Controller about where to forward the flow. If the flow is for
the destination node, the OVS Controller installs rules on the
OVS switch that duplicate the packets of the flow and send
them to one of the VNF instances running Snort IDS.

The Attack Analyzer provides the list of attackers to the
OVS Controller. The OVS controller then installs forwarding
rules to drop all packets originating from the malicious hosts.

IV. EXPERIMENTAL SETUP

This section explains the experimental setup and the param-
eters used in our implementation. The reader can reproduce
the experiment by following the detailed steps given in the
tutorial, along with source code and experiment traces at [14].

0 5 10 15 20

Time (sec)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
li

ty

No load

With LB

Without LB

(a) Time to detect port scanning attack

0 20 40 60 80 100

Time (sec)

0

20

40

60

80

100

C
P

U
 u

sa
g

e
(%

)

VNF1

VNF2

VNF3

VNF4

(b) No load on the system

0 20 40 60 80 100

Time (sec)

0

20

40

60

80

100

C
P

U
 u

sa
g

e
(%

)

VNF1

VNF2

VNF3

VNF4

(c) With Load Balancing (T = 50%)

0 20 40 60 80 100

Time (sec)

0

20

40

60

80

100

C
P

U
 u

sa
g

e
(%

)

VNF1

VNF2

VNF3

VNF4

(d) Without Load Balancing

Fig. 4: Load on VNF instances when the system in under port scanning attack

1) Applications on VNF instances: There are two applica-
tions running on each VNF instance, the Snort IDS and the
RINA monitoring application. Initially, we run Snort IDS on
each VNF and provide it with the Snort community rule set
to perform deep packet inspection on the incoming packets.
Next, we run the distributed RINA monitoring application on
the VNF instances and Controller node. The RINA monitoring
application processes running on the VNF instances publish
their CPU load and Snort alerts, and the RINA monitoring
application process on the Controller node subscribes to these
updates. Parameters of the RINA monitoring application are
shown in Table I. The RINA monitoring application processes
on the VNF instances take the average of C = 20 CPU load
measurements and publish it every δt = 200ms.

2) PI/PID controller: The PI/PID controller running on
the Controller node receives CPU load information from the
RINA monitoring application. Next we start the PI or PID
controller. The parameters for the PI/PID controllers are shown
in Table I. The target load T is set to be 50% and values for
the controller gains (K, Ki and Kd) are set to 0.1. Due to
lack of space, we do not include the analysis of stability of the
PI/PID controllers, but it can be shown that these controller
gain values, given other system parameters, are sufficient for
stability.

3) Attack Analyzer: Next we run the Attack Analyzer on
the controller node. Our simple implementation of the Attack
Analyzer receives Snort alerts through the RINA monitoring
application and parses them for attacks. In this paper, the
Attack Analyzer is configured to only analyze alerts for port-
scanning attacks. It generates a list of hosts responsible for
the attacks, and the OVS controller uses this list to block all
traffic from these hosts. Note that the Attack Analyzer can be
configured to detect other types of attack as well.

4) Configure OVS switch and OVS Controller: Next we
configure the OVS switch and connect it to the Ryu [13] OVS
controller. For each incoming flow, the OVS switch asks the
Ryu Controller about the forwarding port for the flow. The
flow’s idle timeout (ti) and hard timeout (th) values are shown
in Table I. Flows expire after ti seconds of inactivity, and after
th seconds regardless of activity.

5) Traffic Generator: Background traffic is needed to gen-
erated load on the system. Traffic is generated using the
nping application [15], which is an open-source tool for
network packet generation and response time measurement
and analysis. Parameters for the traffic generator are given in
Table I. Each flow is randomly generated at source S1 or S2.
Each flow is randomly assigned a source IP address (which
is different from the IP addresses of hosts S1 and S2). The
destination IP address is that of the destination node. Packets
are sent at the rate (rp) of 20 per second, and the average
packet size (sp) is 1400 bytes. The average lifetime for a

flow (tf) is 150 seconds. At a given time, multiple flows are
generated to put the required load on the system.

6) Attack Generator: The Attack Generator uses the port
scanning application nmap [16] to perform a port-scanning
attack on the destination node. All traffic, including for port
scanning, is duplicated to the VNF instances. Whenever Snort
IDS running on a VNF instance detects the port-scanning
attack, it generates an alert, which gets communicated to the
Attack Analyzer by the RINA monitoring application.

V. RESULTS

This section presents the performance results obtained from
our EL-SEC system implementation on the GENI testbed. We
use different performance metrics to test our implementation.
We measure the time taken to detect and stop a port-scanning
attack with and without load on the system. Moreover, we
look at the effect of Elastic Management on the attack detec-
tion time. We also provide a comparison of the PI vs. PID
controller.

Figure 4a shows the CDF of the time taken to detect a
port-scanning attack under different CPU load on the VNF
instances running Snort IDS. The No load scenario is shown
in Figure 4b. In this scenario, there is no background traffic
when the port-scanning attack is performed, so there is very
little load on the VNF instances. Note that the port-scanning
attack by itself does not result in much CPU load due to
Snort IDS processing. The With LB scenario is shown in
Figure 4c. In this scenario, background traffic is generated
using the Traffic Generator described in IV-5. The Snort IDS
performs deep packet inspection on the incoming packets and
this generates significant load on the system. Using the PI
controller, the load is balanced between VNF1 and VNF2.
The CPU load on VNF1 and VNF2 is around the target load
of 50%. The Without LB scenario is shown in Figure 4d,
where the background traffic is not balanced, so all the traffic
is sent to VNF1. The CPU load on VNF1 is around 90%.
As seen in Figure 4a, the time taken to detect the attack is
significantly larger when there is a high load on the VNF hosts.
However, with the elastic management of resources and the
load balancing (Figure 4c), the time taken to detect the attack
is comparable to that of the unloaded system (Figure 4b). In
the loaded scenario (Figure 4d), the Snort IDS is unable to
process packets at line rate, thus packets are queued, and when
the queue reaches its capacity, packets are dropped. This leads
to significant performance degradation due to overload of the
VNF instances running Snort IDS.

Next, we show how our system scales when we increase
the load on the system. Figure 5 shows load balancing under
the PI and PID controllers. Initially, there is no load on the
system. The target load is set to 50% (T = 50%). As seen
in Figure 5a for the PI controller and Figure 5b for the PID

0 100 200 300 400 500 600 700

Time (sec)

0

20

40

60

80

100

C
P

U
 u

sa
g
e

(%
)

VNF-1

VNF-2

VNF-3

VNF-4

(a) PI controller (T = 50%)

0 100 200 300 400 500 600 700

Time (sec)

0

20

40

60

80

100

C
P

U
 u

sa
g
e

(%
)

VNF-1

VNF-2

VNF-3

VNF-4

(b) PID controller (T = 50%)

Fig. 5: Load balancing with PI and PID controllers

controller, if the CPU load on a VNF instance exceeds the
target load T , a fraction of the incoming traffic is diverted to
other VNF instances. Initially, all (duplicated) traffic is sent
to VNF-1. When the load on VNF-1 exceeds T , a fraction of
the traffic is sent to VNF-2. The same happens as the load on
VNF-2 and VNF-3 exceeds the target, and so a fraction of the
traffic is diverted to VNF-3 and VNF-4, respectively. Then, we
gradually decrease the load on the system by decreasing the
rate of incoming flows. As expected, initially the CPU load on
VNF-4 gradually goes down as other VNF instances (VNF-1,
VNF-2, and VNF-3) are able to process a larger percentage
of incoming flows. As the rate of incoming flows goes further
down, the CPU load on VNF-3, VNF-2 and finally VNF-1
also gradually goes down. The results show that both PI and
PID controllers can be used to elastically manage load on
the VNF instances. However, as expected, the PID controller
(Figure 5b) has smaller oscillations around the target load (T)
compared with the PI controller (Figure 5a), thus giving better
performance.

VI. REPRODUCIBILITY AND DISCUSSION

To reproduce the results shown in this work, we created
a detailed tutorial, along with source code and experimental
traces at [14]. We also include real-time monitoring graphs for
a live demonstration of the EL-SEC system performance.

Our implementation on the GENI testbed shows that GENI
is capable of supporting a wide range of experiments. Because
of the distributed nature of the work, EL-SEC cannot be
deployed in simulators or single-machine based emulators
(e.g., mininet [17]). GENI provides the distributed virtualized
environment that can be used to fully implement and test the
capabilities of EL-SEC.

VII. CONCLUSION AND FUTURE WORK

EL-SEC is a general framework that can be used to support
security network functions on a virtualized infrastructure. EL-
SEC uses a modular approach, where different components
of the EL-SEC system are combined to implement a desired

behavior. As a use case, we implement an intrusion detection
system (IDS) on the GENI testbed using EL-SEC. The Snort
IDS application is used as the security VNF. RINA, a clean
slate internet architecture, is used to develop a distributed
monitoring application to communicate Snort and VNF state
information to the controller node. A PI or PID controller is
used to elastically manage the load on VNF instances, and to
add/delete VNF instances depending on the system load. An
Attack Analyzer processes alerts from all the Snort instances
running as VNFs and generates a list of attackers whose traffic
is stopped by the OVS controller.

Our results further show that control theoretic load managers
(e.g., PI or PID) can be used to elastically manage resources on
the virtualized infrastructure. Moreover, we show that elastic
management of resources enables quicker detection of attacks.

Experimenters can use EL-SEC to deploy different security
VNFs on a virtualized infrastructure. Different components of
EL-SEC can be extended to support a variety of experiments.
We aim to extend EL-SEC to include support for “serverless
computing" [18]. EL-SEC can also be extended to support
machine-learning based elastic management of resources. The
Attack Analyzer can also use techniques from machine learn-
ing to learn from traffic patterns and efficiently detect attacks.

ACKNOWLEDGEMENT

We would like to thank Marzieh Babaeianjelodar and Yao-
qing Liu for their help during the initial phase of this work.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in ACM SIGCOMM, 2012, pp. 13–24.

[2] GENI, http://www.geni.net/.
[3] Boston University RINA Lab, http://csr.bu.edu/rina/.
[4] N. Akhtar, I. Matta, and Y. Wang, “Managing NFV using SDN and

control theory,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium, April 2016, pp. 1113–1118.

[5] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), Boston, MA, 2017, pp. 97–112.

[6] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in SIGCOMM, 2014, pp. 163–174.

[7] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in 10th USENIX Networked Systems Design and Implementation
(NSDI 13), 2013, pp. 227–240.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, pp.
69–74, 2008.

[9] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” ser. SIGCOMM ’15. ACM.

[10] SNORT, https://www.snort.org/.
[11] Y. Wang, I. Matta, and N. Akhtar, “Application-Driven Network Man-

agement with ProtoRINA,” in IEEE/IFIP Network Operations and
Management Symposium (NOMS 2016), April 2016, March 2015.

[12] V. Mishra, V. K. Vijay, and S. Tazi, Intrusion Detection System with
Snort in Cloud Computing: Advanced IDS. Singapore: Springer
Singapore, 2016, pp. 457–465.

[13] Ryu Controller, http://osrg.github.io/ryu/.
[14] EL-SEC Webpage, tutorial, source code, http://cs-

people.bu.edu/nabeel/ELSEC/.
[15] nping, https://nmap.org/nping/.
[16] nmap, https://nmap.org/.
[17] Mininet, http://mininet.org/.
[18] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” in USENIX HotCloud 16), Denver, CO, 2016.

