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Abstract—Serverless computing has emerged as a new com-
pelling paradigm for the deployment of applications and services.
It represents an evolution of cloud computing with a simplified
programming model, that aims to abstract away most operational
concerns. Running serverless functions requires users to configure
multiple parameters, such as memory, CPU, cloud provider, etc.
While relatively simpler, configuring such parameters correctly
while minimizing cost and meeting delay constraints is not
trivial. In this paper, we present COSE, a framework that
uses Bayesian Optimization to find the optimal configuration for
serverless functions. COSE uses statistical learning techniques to
intelligently collect samples and predict the cost and execution
time of a serverless function across unseen configuration values.
Our framework uses the predicted cost and execution time, to
select the “best” configuration parameters for running a single
or a chain of functions, while satisfying customer objectives.
In addition, COSE has the ability to adapt to changes in the
execution time of a serverless function. We evaluate COSE not
only on a commercial cloud provider, where we successfully found
optimal/near-optimal configurations in as few as five samples,
but also over a wide range of simulated distributed cloud
environments that confirm the efficacy of our approach.

I. Introduction
Serverless computing has emerged as a new and com-

pelling paradigm for the deployment of cloud applications
and services. It promises new capabilities that make writing
scalable microservices easier and cost effective. Most of the
prominent cloud computing providers have released serverless
computing platforms, and there are also several open-source
efforts including OpenLambda [1] and OpenWhisk [2].

The serverless paradigm [3] at its core provides developers
with a simplified programming model for creating cloud
applications that abstracts away most, if not all, operational
concerns. They no longer have to worry about provisioning
and managing servers, and other infrastructure issues. Instead,
they can focus on the business aspects of their applications.
The paradigm also lowers the cost of deploying cloud code
by charging for execution time – following a “pay as you go”
pricing model [4], [5] – rather than for allocated resources.

In serverless application-development [6], a developer im-
plements the business functionality as a stateless or com-
position of stateless functions using one or a combination
of the programming languages supported by major cloud
providers. Currently, Python and Nodejs are the most common
scripting languages supported by major serverless platforms
(c.f. Table I). The developer then submits the code to the cloud
provider along with dependencies (e.g. libraries), and specifies
configuration parameters such as memory size or CPU power.
The cloud provider stores this code, and on invocation – which
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Table I: Serverless platforms

can be triggered through events or HTTP requests – executes
this code either in containerized environments [2] or virtual
machines over varying underlying physical infrastructures,
with the specified configurations. Table I highlights serverless
platforms from three major cloud providers 1. The table shows
programming languages supported, billing methodology, and
memory size or CPU-power options that a user can select.

Serverless computing has given a much-needed agility to
developers, abstracted away the management and maintenance
of physical resources, and provided them with a relatively
small set of configuration parameters: memory and CPU.
While relatively simpler, configuring the “best” values for
these parameters while minimizing cost and meeting perfor-
mance and delay constraints poses a new set of challenges.
This is due to several factors that can significantly affect the
running time of serverless functions.

To highlight the effects of parameter configuration on the
performance and cost of serverless functions, we deployed
serverless functions written in Python on AWS Lambda. In
AWS Lambda, a customer is allowed to configure the amount
of memory allocated to a serverless function. We ran this
function for different memory sizes and studied the effect of
varying memory sizes on the performance of the function, i.e.
run-time. Figure 1b shows how the run-time of these serverless
functions decreases with the increase of memory size allocated
to the function. However, the marginal improvement in the
run-time decreases as the memory increases. Figure 1c shows
the cost of corresponding runs, which is the product of price

1Note that Microsoft Azure Functions does not provide users with the
ability to configure functions and the cost is based on per-second resource
consumption and execution time. In this work, we focus on configurable
functions where users (or service providers) can configure serverless functions
to meet service requirements.
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Figure 1: Serverless function’s performance with different memory sizes and co-location

(Figure 1a) and run-time (Figure 1b). As shown in Figure 1c,
choosing too small a value or too large a value for memory can
result in higher costs for running the function2. This behavior
is because the pricing model as exposed by the cloud providers
is tightly coupled with the amount of resources specified
to execute the serverless function (c.f. Figure 1a), and the
dependency between memory and CPU resource allocation –
AWS Lambda allocates CPU power linearly in proportion to
the amount of memory configured [8]. We observed similar
behavior when setting configurable parameters on Google
Function. Running similar experiments on Apache OpenWhisk
showed that co-location has a significant impact on the run-
time. Figure 1d shows the effect of co-locating serverless
functions on OpenWhisk running on a single-CPU machine.

The examples above highlights some factors that can affect
the performance of running serverless functions. However,
they are not the only factors. A recent study [9] showed
that the underlying infrastructure and resource provisioning
can vary significantly depending on multiple factors including
function placement, cold starts, I/O and network conditions,
type of VMs/containers, and co-location with other functions.
The user is oblivious to all these other factors, and has only
limited control over a few parameters affecting performance,
i.e. memory and processing power.

Given the issues raised above and the limited control a user
has over the underlying system parameters, finding the “best”
configuration to run a function while minimizing cost and
meeting performance and delay constraints poses a new set
of challenges. The problem is even more challenging when a
user is running a chain of interdependent functions – where a
user can still meet the performance requirement of the chain
by trading off the performance of some of the functions in the
chain for lower cost – and when a user is presented with the
option to pick between multiple locations, i.e. edge and core
[10] [11] [12].

In this paper we present COSE, a framework that uses
Bayesian Optimization to statistically learn the relationship
between cost/run-time and unseen configurations of a server-
less function. Using this learned relationship, henceforth re-
ferred to as performance model of the serverless function,
our framework is able to pick the best configuration for a
serverless function which not only minimizes the cost but

2Our results are consistent with recent studies [7] on the cost of executing
serverless functions.

also meets user-specified performance criteria such as response
time/delay of running a serverless function or chain of these
functions. Our framework is lightweight and has the ability
to dynamically adapt to changes in the execution time of a
serverless function. It can be incorporated into an offering
by cloud providers; it could be implemented as a value-
added proposition by service providers; or it could be directly
leveraged by customers. We evaluate our framework not only
on a commercial cloud provider, where we successfully found
optimal/near-optimal configurations in as few as five samples,
but also over a wide range of simulated distributed cloud
environments that confirm the efficacy of our approach.

II. System Description

Figure 2 provides an overview of our COSE framework.
It consists of two main components: a Performance Modeler
component, which is responsible for learning the applica-
tion’s performance model, i.e. the relation between cost/run-
time and configurations for the serverless function, and the
Config Finder component whose goal is to find the “best”
configuration that minimizes cost while satisfying the delay
bound on the running time of the serverless function. As
indicated earlier, COSE can be incorporated into an offering
by cloud providers; it could be implemented as a value-
added proposition by service providers; or it could be directly
leveraged by customers. For the rest of this work, we will
assume that our COSE framework has been adopted by a
Service Provider, and through standard APIs, a client registers
her serverless function with the COSE service.

Figure 2 highlights the interactions between our COSE
framework and its environment. Application clients, e.g. mo-
bile and IoT devices, issue requests to the cloud provider to
invoke a serverless function. Once the function is invoked, a
trace log, containing the cost and execution time, is generated
and stored. Our framework acts as a monitoring service and
utilizes the information from the trace to learn the performance
model of the function. After the learning phase converges,
COSE uses Config Finder to find the “best” configuration
that minimizes cost while satisfying the delay bound on
the running time of the serverless function or a chain of
functions. To account for delays associated with different
locations/services supported by a designated cloud provider
(e.g. Amazon Lambda’s “edge” vs. “core”), a client reports
the response times of its serverless function invocations to
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COSE3. If a change to the previous configuration is needed,
COSE connects to the designated cloud provider using APIs
to modify the configuration. Next, we discuss the approaches
and choices for the components of our COSE framework.

III. COSE: The Performance Modeler component

Our COSE framework has been entrusted to execute a single
or a set of serverless functions on a designated cloud provider.
It has the ability to configure the parameters of the serverless
function, e.g. amount of memory, or the location of running the
function by requesting it from the Cloud Provider (CP). The
goal is to learn the application’s performance model. There
are several ways to achieve this:
1) Exhaustive Search for the best cloud configuration: This
method runs the serverless function under all or a subset of
possible configurations to find the configuration that minimizes
the cost [13]. This methodology has very high overhead.
Amazon Lambda alone has over 45 different memory types
with a choice of location between “edge” and “core”. To
learn configurations across multiple CPs needs hundreds, if not
thousands, of function executions. Moreover, the performance
of the function can vary depending on the type of physical
resources the function is deployed to execute on, and whether
the function is co-located with other functions. This can lead to
repeating the exhaustive search to find the best configuration.
2) Algorithms for parameter descent: As an alternative to
doing exhaustive search, this method performs the search using
parameter descent algorithms. The algorithms choose param-
eter values in the direction of decreasing cost. For example, if

3While this requires changes to the client, in practice, techniques to estimate
the response time across geographically distributed clients can be incorporated
without requiring any changes to the client.

the memory value 512MB gives lower cost than 448MB,4 the
algorithm chooses a value greater than 512MB in anticipation
of decreasing the cost further. Algorithms such as Additive
Increase Additive Decrease (AIAD) and Gradient Descent,
can be used. Such algorithms have tendency to get stuck in
local minima, which leads to sub-optimal configuration for a
serverless function.

Figure 3 illustrates a simple example where AIAD gets
stuck at a local minimum. AIAD, as its name implies, uses
a small fixed amount – 64MB in our example – to either
increase or decrease requests for resources. Imagine a CP
with two machines with different hardware configurations:
machine-1 and machine-2. The performance of the serverless
function will be different on machine-1 and machine-2 since
these are shared resources and the performance depends on the
utilization of each machine. Initially, AIAD requests a large
memory configuration, e.g. 2816MB. Our serverless function
is placed on machine-1. Using AIAD, it descends in the
direction of decreasing cost. When the memory requested
decreases from 2816 MB to 2752 MB (shown by arrow 1), the
CP decides – potentially due to cost savings from colocating
it with other functions – to place the serverless function on
machine-2. Since the cost of execution is high at memory
2752 MB, AIAD changes direction and asks for a higher
memory value of 2816 MB, which makes the CP place the
function back on machine-1 (shown by arrow 2). In the next
step, AIAD will further go in this same cost-reducing direction
and ask for a higher memory value of 2880 MB (shown by
arrow 3). However, the cost becomes higher at 2880 MB when
compared with 2816 MB, so AIAD will change direction and
in the next iteration, ask for 2816 MB (shown by arrow 4).
The process will keep repeating and AIAD will be stuck at a
local minimum. We implemented AIAD and Gradient Descent
and tested them on commercial cloud providers – these results
are not shown in this paper due to lack of space.

Another drawback of parameter descent algorithms is that
they do not continually learn the underlying relation between
cost/execution time and configuration, and so if the underlying
conditions or requirements change, the whole process needs
to be repeated.
3) Statistical Learning for finding the best configuration:
This approach uses a statistical learning model to predict the
performance of a serverless function under different configu-
rations. It involves sampling different configuration values to
successfully model the performance of the function and predict
the configuration that will minimize cost. In this paper, we use
Bayesian Optimization as the statistical learning approach to
find the “best” configuration for a serverless function.

A. Our Approach: Leveraging Bayesian Optimization

The objective of Bayesian Optimization (BO) is to optimize
over a black-box function g(x). In our case, the function
g(x) that we want to learn is the relationship between per-
formance/cost and all possible configurations x, not to be

4Recall that AWS memory options available from AWS Lambda increases
or decreases in 64MB increments.



confused with the serverless function/code itself that we want
to execute. Knowing this relationship g(x), one can readily
locate the configuration that minimizes cost, or that meets a
certain performance/delay requirement.

BO constructs a probabilistic model for g(x) in a predefined
parameter space and exploits this model to make decisions
about where to next sample/evaluate the function. It uses the
information from all previous observations of g(x) to find the
next sample. The goal is to learn g(x) in a few number of
samples. Compared to deterministic searching/learning, BO
dynamically adapts its search based on its current character-
ization and confidence interval of the prediction model. BO
dynamically picks the next sample that gives more information
and avoids unnecessary samples. BO stops searching when it
has high confidence in the predicted model and the expected
improvement for the predicted model is small for new samples.

BO at work: BO observes the objective function g(x) at
different sampled values. It models g(x) as a stochastic process
and computes a confidence interval for g(x) based on the
samples collected. Figure 4 shows a simple example where
configuration x consists of a single dimension, i.e., memory
for a serverless function. The actual underlying function is
given by the solid blue line. The confidence interval is an
area around the predicted function where the actual function
is passing through with 95% probability. In Figure 4a, there
are only two samples collected and the confidence interval is
higher in the region further away from the observed values.
The black dashed line is the predicted objective function of
g(x). As BO collects more samples (in Figures 4b and 4c),
the confidence interval gets smaller and the prediction is closer
to the actual values. BO intelligently samples the next point
to evaluate/observe g(x), based on the so-called acquisition
function – Expected Improvement (EI) in this case. EI is
calculated for each possible configuration in the search space.
A configuration with the highest EI value is selected as the
next sample. As shown in the lower part of Figure 4a, the
highest EI value is at 128 MB and this value is used as a
configuration value for the next run of the serverless function
as shown in Figure 4b.

A key part of BO is choosing an acquisition function to
determine the next configuration point to evaluate. There are
a number of possible acquisition functions and we chose EI
as it is the most widely used - it has been shown to out-
perform others and it does not require parameter tuning [14].
Intuitively, EI samples at a point x where we are most likely
to see an improvement in cost when compared to the best
configuration value we have seen so far. Due to lack of space,
we skip the mathematical details [15], but the EI expression
has two terms: an exploitation term, and an exploration term.
A parameter ω is used to define the amount of exploration,
where higher values lead to more exploration (i.e. evaluating
g(x) at new configuration values x), and lower values lead
to exploitation (i.e. re-evaluating g(x) at already explored
configuration values).

B. Adapting BO for Serverless Functions

To make BO run efficiently and accurately for serverless
functions, we made changes to the classical BO. These
changes are highlighted next.

(i) Initial Points: The choice of the initial points can guide
the search for the optimal solution in Bayesian Optimization.
A random choice of initial points can lead to longer con-
vergence time. Since a serverless function tends to have a
convex relation between the cost of execution and the chosen
configuration (cf. Figure 1c), we chose the initial points as
uniformly distributed in the search space. For this work, we
chose four initial points.

(ii) Reduce the Search Space: We reduce the search space
by discretizing the possible configuration parameters. BO
has a computational complexity of O(C4), where C is the
number of data samples. We used the memory values and
the cloud providers as the set of parameters to choose from.
We follow the choices of memory values available to cus-
tomers on Amazon Lambda as shown in Table I. Possible
memory values that can be selected on Amazon Lambda are
between 128MB and 3008MB, with offset of 64 MB, i.e.,
m ∈ {128MB, 192MB, 256MB, ..., 3008MB}. We calculated EI
only for these discrete values of possible input memory size,
which decreased the running time significantly. For this work,
we have only two cloud providers or two locations/services
supported by a cloud provider, Edge-Cloud and Core-Cloud,
which are readily discrete.

(iii) Handling Noise: A cloud environment is shared and
there are uncertainties introduced because of the sharing
of resources. Co-location of functions, cold-start, hardware
failures, resource-overuse, etc., can impact the execution time
of a serverless function running under the same configuration.
We assume additive white Gaussian noise with hyperparameter
α. Finding the best value for α is outside the scope of this
work. Our experimental results show that α = 0.01 captures
most uncertainties in the serverless cloud platforms and we
chose this value for our system.

(iv) Accurately Predicting Changing Performance Model:
BO assumes that the target performance model is not changing
while the samples are being collected. However, in practice,
the target cost-configuration relation can change because of
multiple reasons, e.g. migration of the serverless function to a
different machine by the cloud provider, change in execution
time based on the change in the input data to the function,
etc. To predict the dynamics in the target cost-configuration
relation, we keep a history of the configuration points sampled,
and we discard the “old” sampled points as we collect new
samples using a sliding window approach. This helps BO
sample points again in the search space where it had sampled
in the past, thus capturing the changes in the target cost-
configuration relation.

(v) Convergence Criteria: As mentioned earlier, we use
Expected Improvement (EI) as the convergence criterion for
BO. When the EI for the next collected sample is below 5%,
we consider that BO has converged and we henceforth use our
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Figure 4: Bayesian Optimization example

BO predicted cost/run-time vs. configuration model to find the
least-cost configuration that satisfies the delay constraint on the
serverless function.

Our COSE-based service provider runs BO to predict the
performance model of the serverless function, i.e. the black-
box cost/run-time vs. configuration relation. It will keep on
sampling until the BO has converged on the performance
model. Once converged, COSE can use the predicted model to
find the “best” configuration that satisfies the delay constraint
for a serverless function. In Section IV, we show how delay
constraints for serverless functions are met.

IV. COSE: The Config Finder Component

Given the performance model of a serverless function,
predicted by the Performance Modeler, it is easy for the second
component of our COSE framework, Config Finder, to locate
the configuration that minimizes the cost. However, real-world
applications typically have delay constraints on the running
time of a serverless function or chain of functions. In this
section, we discuss how Config Finder picks the least-cost
configurations that satisfy delay constraints.

The cost of running a serverless function f is given by:

g f (x) = t f (x) × p f (x)

where t f (x) is the execution time of the function using config-
uration x, and p f (x) is the price (cost per unit time) for running
the function using configuration x. p f (x) is provided by the
cloud provider and the predicted g f (x) is provided by the BO,
so we can use these values to calculate the predicted execution
time t f (x) for a serverless function under configuration x. The
total time to run a function (end-to-end delay) is given by:

T f (x) = t f (x) + d(x)

where d(x) is the delay other than the execution time of a
function (such as network, queuing delay, etc.) Note that d(x)
is specific to a cloud provider or location and we estimate
it by taking the difference T f (x) − t f (x) of multiple samples
collected by BO for the cloud providers or locations. This
will help us predict the total time to run a serverless function,
i.e. response time, on any cloud provider/location for a given
configuration value.

With all the information above, it is easy for a service
provider to find a configuration that satisfies the (end-to-end)
delay constraint for a single serverless function. However, the
problem gets complicated when we have a chain of functions

(service chain) that need to execute one after another. All
current serverless cloud providers support the chaining of
functions. The service provider needs to select a configuration
for each serverless function such that the cost to execute
the service chain is minimized, while satisfying the delay
constraint on the running time of the whole chain. The Config
Finder module in COSE solves this problem. Using Integer
Linear Programming (ILP), we formulate the problem as an
optimization problem. Config Finder solves the ILP to find
the best configuration for a chain of functions. Note that to
solve for a single function, we consider the degenerate case
of a chain of size one.

We assume that for each serverless function f in chain F,
we choose the cloud provider v ∈ V and the memory m ∈ M
such that the total cost for placing the chain is minimized and
the delay constraint DF on service chain F is satisfied.

Define Y f
x ∈ {0,1} = 1 if function f ∈ F is deployed using

configuration x ∈ C, 0 otherwise.
The objective of the Config Finder is to minimize the total

price paid for the chain of functions. This is given by:

minimize
(∑

f∈F

∑
x∈C

g f (x)Y f
x

)
(1)

subject to:
1) The delay requirement for the service chain is satisfied:∑

f∈F

∑
x∈C

T f (x)Y f
x ≤ DF (2)

where T f (x) is the predicted end-to-end delay for running
serverless function f ∈ F using configuration x ∈ C.
2) A single configuration x ∈ C is selected for each serverless
function in the chain.∑

x∈C

Y f
x = 1 ∀ f ∈ F (3)

The solution to this problem yields a least-cost feasible
solution, i.e. the resulting Y f

x , that gives the configuration x
of each serverless function f in the chain. Note that one can
argue that ILP takes long to solve. However, since a chain
typically consists of a few functions, the total time to execute
this ILP on a CPLEX solver [16] is only a few milliseconds.

V. Experimental Results: Running COSE on Amazon Lambda
We test the proposed COSE system on AWS Lambda, a

very popular serverless cloud provider. We start by describing
the class of functions that we tested on AWS Lambda.
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Figure 5: COSE performance on Amazon Lambda for I/O Intensive serverless function

1) Representative Functions: we test our COSE framework
across four different representative functions for serverless
computing. These functions represent the different types of
computation (combination of I/O-, CPU-, network- and mem-
ory-intensive tasks) that a serverless application typically
performs: (i) CPU-intensive: This is a function that calculates
the trigonometric function atan of multiple numbers, hence
making it more CPU-heavy function; (ii) Memory-intensive:
This function applies a filter on a large image. This requires
extensive use of memory; (iii) I/O-intensive: This function
performs multiple I/O related operations on a file, i.e., open-
ing, reading and closing a file; (iv) Network-intensive: This
function downloads a large file from a server.

These functions were implemented in Python3.6/3.7 and
deployed on AWS Lambda. Each function was deployed
as a separate AWS Lambda function. Figure 1b shows the
run-time for the CPU-intensive, memory-intensive and I/O-
intensive functions under different memory configurations. We
do not show the results for the network-intensive function since
change in memory had little/no impact on the running time of
the function. This is because the network resources allocated to
a function do not change as we change the memory requested.
Figure 1c shows the price-memory relation for CPU-, memory-
and I/O-intensive functions.

Even though CPU- and I/O-intensive functions do not use
more than a certain amount of memory, their performance is
affected by the memory requested for the function. The reason
for that is, AWS Lambda assigns CPU share to each function in
proportion to the memory configured for the function. Hence
more memory will assign more CPU cycles to a function.

2) Evaluation Results: We ran the CPU-intensive, I/O-
intensive and memory-intensive functions shown in Figure 1
on Amazon Lambda using COSE. Since the behavior of these
functions is very similar to each other, we show results for
only the I/O-intensive function here. To get an estimate of the
optimal memory value, i.e. the memory value that minimizes
the price, we ran the serverless functions multiple times across
different memory values. As seen in Figure 1c, the I/O-
intensive function has the lowest price in the memory range
900MB-1400MB.

We use COSE to find the optimal configuration for this
function (with the goal of minimizing the cost, with no delay
requirement on the execution time of the function). For the
first few requests, as shown in Figure 5a, COSE explores
different memory values and once it learns the underlying
cost-memory relation, it starts suggesting optimal/near-optimal

memory values in the range 900-1400MB. The corresponding
cost for individual requests (function invocations) is given in
Figure 5b. Again, COSE finds the optimal/near-optimal cost
for the function ($2.9× 10−5 as seen in Figure 1c for the I/O-
intensive function).

To compare COSE with static configurations, we invoked
the I/O-intensive function 100 times with the maximum and
minimum memory values, possible on AWS Lambda, to
get the best/worst running times for the function, and also
the corresponding cost. Figure 5c shows the running time
of the serverless function when invoked with configurations
picked by COSE, maximum-memory=3008MB, and minimum-
memory=128MB. The minimum-memory configuration takes,
on average, around 15 seconds to complete a request, while the
maximum-memory configuration takes, on average, 1 second
to complete the request. COSE performance is very close to
maximum-memory. However, the cost incurred when using
COSE is even less than the cost for minimum-memory, as
shown in Figure 5d, due to lower execution time under COSE.

VI. Evaluation in a Distributed Cloud Environment

While the results of running our framework on AWS
Lambda highlight the utility of our COSE framework, eval-
uating additional aspects of our framework presents a new set
of challenges because we have little or no knowledge about
the underlying infrastructure, the decisions made by the cloud
provider regarding the allocation of resources, which functions
are co-located, if the function had cold-start or warm-start,
and queuing, propagation and other delays in the system.
While it was possible in the previous section to compare
the performance of an I/O-intensive serverless function in a
simple scenario by exhaustively searching the memory space,
and finding where the optimal memory value for this function
lies, this approach may not be practical for scenarios where
we have multiple functions (and possibly chains of functions).
To establish the efficacy of our COSE framework, we model a
distributed cloud provider and evaluate the framework across
a set of multiple functions using extensive simulations. Since
in the simulated cloud environment we know the target func-
tion that COSE is trying to optimize, we can compare the
performance of COSE against the “ground truth”.

A. Modeling Cloud Provider

We model our cloud provider by adopting the following
aspects of commercial cloud providers.



(i) Co-location: We modeled the effect of co-location of
functions by deploying the open-source serverless platform,
Apache OpenWhisk [2], on Chameleon Cloud [17]. We de-
ployed multiple functions on the same machine. The effect
of co-location is given in Figure 1d. We modeled this in the
cloud provider.

(ii) Life-time and Cold-start: If a function is not executed for
a certain period of time (i.e. function life-time), the function is
evicted by the cloud provider, and the subsequent request for
running the function will experience extra delay (i.e. function
cold-start). We use Amazon Lambda function’s life-time of
26 minutes and cold-start delay of 0.25 seconds, as shown by
previous studies [9], [18].

(iii) Edge-cloud and core-cloud: To compare across different
cloud providers or different locations provided by one cloud
provider, we model two types of clouds, edge-cloud and core-
cloud. We assume that edge-cloud is closer to the user and
thus has a smaller round trip delay. However, edge-cloud is
more expensive when compared with the core-cloud.

(iv) Dynamic serverless function: To test the adaptive per-
formance of COSE, we run COSE for a dynamic function
whose execution time changes over time.

(v) Modeling price and execution time of a serverless
function: We develop an analytical model for the cost and
execution time based on the experimental results of running
these functions on Amazon Lambda (details next).

B. Modeling cost and execution time

Our analytical model for cost and execution time of server-
less functions is based on AWS Lambda’s pricing and execu-
tion model.
Cloud provider’s pricing model: We use Amazon Lambda’s
pricing model. Amazon uses a linear pricing model, as shown
in Figure 1a. We use this pricing model for the core-cloud.
Since the price for edge-cloud is higher than the core-cloud,
we set the edge resource price to be 1.5 times the price
of resources at the core-cloud. This linear pricing model is
captured by the following equation for serverless function f :

p f (v,m) = K(v) × m (4)

where m is the memory used by function f , v ∈ V is the cloud
provider, and K(v) is a constant and its value depends on the
cloud provider’s pricing.
Execution time model: The execution time for representative
functions is shown in Figure 1b for Amazon Lambda. The
execution time for these functions follows an exponential
decay. Thus, we model the execution time for function f as:

t f (v,m) = t f (v,mmin) + t f (v,mmax) × e−λ(m−mmin) + h(v) (5)

where t f (v,mmin) is the running time for function f at the low-
est possible memory (mmin = 128MB for Amazon Lambda),
t f (v,mmax) is the running time at the highest possible memory
(mmax = 3008MB for Amazon Lambda), v is the cloud
provider, and λ is the decay constant. By changing t f (v,mmin),
t f (v,mmax) and λ, we can fit the execution model for any
serverless function. The constant h(v) captures the delay due to
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cold-start and co-location, and its value depends on the current
state of the cloud provider.
Cost for running a serverless function: The total cost
g f (v,m) for running function f on cloud provider v ∈ V is
given by the product of the price per second (p f (v,m)) and
the total execution time (t f (v,m)).

g f (v,m) = p f (v,m) × t f (v,m)

C. Simulation Results

Using the above models allows us to simulate a cloud
provider that has two parameters to be optimized, i.e. selection
of location (edge vs. core) and memory value for deploying
a serverless function. Since we have more control over the
execution model and resource management, we evaluated the
convergence and accuracy-related aspects of COSE. In addi-
tion, we evaluated some unique scenarios, for example, dy-
namically changing the underlying execution model to evaluate
how well COSE adapts to changes. Our evaluation showed that
COSE can learn the optimal or near-optimal configurations for
a serverless function with as few as 13-15 samples and can
adapt to changes well5. Also, COSE showed significant cost
savings without compromising on performance6.

Convergence: COSE uses Bayesian Optimization (BO) to
predict the price function. A small convergence time for BO
means that COSE can quickly find the “best” configuration
that minimizes the price paid while satisfying the delay
constraint. In this experiment, we looked at how long it takes
for BO to converge and find the underlying cost-configuration
relation. Since we are using a cloud provider model, we
know the underlying performance function. As explained in
Section III-A, we use expected improvement (EI) as the
convergence criterion. Figure 6a shows the CDF (taken over
100 runs) of the number of configuration samples taken for BO
to converge. We observed that BO can converge, 95% of the
time, with as few as 15 samples. In Figure 6b we show how EI
decreases as the number of configuration samples increases.
The first few samples have the highest EI value. However,
as COSE takes more samples, the EI value rapidly decreases.
With each new sample, BO improves its understanding of the
underlying performance function and subsequent configuration
samples contribute little to improving the prediction.

5We note that for a commercial cloud provider with one parameter, COSE
was able to find a near-optimal configuration in 5 samples.

6Simulation parameters are available at [19].



Configuration Selection: After BO converges, COSE starts
picking the “best” possible configuration for serverless func-
tions using Config Finder. We used a function whose execution
model had an optimal configuration of {memory = 576MB,
location = core-cloud}. In Figures 7a and 7b, we show the
configurations that COSE picked for each request and their
corresponding cost. For the first few requests (up to 15
requests), COSE is exploring different configurations. After
the BO in COSE converges, Config Finder starts picking
optimal/near-optimal configurations for the function, i.e. the
corresponding price paid of each serverless request is lowest.
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Dynamicity: The performance of a serverless function can
be affected by factors like co-location, hardware, resource
provisioning policy, etc. In case any of these factors changes,
the configurations that were optimal before the change may
no longer be optimal. We designed COSE so it is resilient
in the face of such changes and is able to find new optimal
configurations. We tested COSE’s ability to adapt to a change
in the underlying execution model. We created 500 requests
for a serverless function. The first 250 requests follow a certain
execution model and have certain optimal configurations. For
the next 250 requests, we change the execution model hence
the optimal configurations. We observed that depending on the
history, COSE can successfully unlearn the previous execution
model, learn the new model, and start predicting the new
optimal configurations.

In Figure 8, we show the performance of COSE in terms of
sample error in memory for three scenarios. The sample error
E s is defined as the difference between the sampled memory
and the optimal memory: E s = |ms − mo|, where ms is the
memory being sampled by BO and mo is the optimal memory.
In the static case, the underlying function’s execution model
does not change, and COSE remembers the full history, hence
it takes a few samples for COSE to converge and the error
is small. In the static+window case, the underlying function’s
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execution model does not change, and COSE remembers a
limited history (last 40 samples). As BO loses historical data,
the acquisition function periodically samples configuration
points for exploration, and hence, there is high variability in
memory selection leading to the higher error value. In the
third (dynamic+window) case, COSE not only remembers a
limited history but the serverless function’s execution model
also changes. We see the highest error in this scenario since
COSE is constantly collecting samples to adapt to the changing
execution model, and it takes time proportional to the history,
to unlearn the previous execution model and learn the new one.
That is a trade-off that COSE can make: more history would
yield less sampling, but it would be slow to adapt to changes.
A shorter history would result in more sampling, but COSE
would adapt to changes more quickly. In all three scenarios,
COSE converges to optimal/near-optimal values.

Delay Bounded Chaining: Serverless applications can have
a chain of functions that triggers one another, where the
output of one function serves as input to the next. This is
called service chaining. Service chains usually have a delay
constraint on the total execution time to meet quality-of-
service requirements.

As each individual action is a serverless function, picking
the right configurations is critical to the performance of
the application and the cost of cloud usage. Here we show
how COSE successfully finds the optimal configurations for
serverless functions comprising a delay-bounded chain.

In this experiment, each request is a service chain consisting
of two or more functions. Each function has a different
execution model, hence different optimal configuration. As
explained in Section IV, COSE uses BO’s prediction of price
and execution time to formulate the problem as an Integer
Linear Program (ILP). COSE solves this ILP to find a suitable
configuration for each function in the chain. Initially, we let the
BO collect configuration samples and wait for it to converge.
Once BO has converged, we observe the “best” configuration
selected by COSE for each function in the chain such that
the total (end-to-end) delay of the chain satisfies the delay
bound. Although we tested COSE for different chain sizes,
for simplicity, we show results for service chains of size two.

In Figure 9a, we look at how the delay bound affects
the cost of cloud-usage. For loose delay requirement, COSE
finds the “best” location and memory for both functions,
hence lower cost. As the delay requirement becomes more
stringent, COSE has to make a decision of either increasing
the memory available to a function or placing it on the edge-
cloud to reduce the delays. Both of these choices will raise
the cost and that is why we see an increase in the cost as
the delay bound becomes tighter. In Figure 9b, we show
the corresponding configurations selected for varying delay
bound. Initially, because of higher delay bound, COSE runs
both functions on the core-cloud to lower the usage cost
and selects the memory that lowers the cost. However, as
the delay bound becomes smaller, COSE has to increase the
memory available to either function or change the location
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Figure 9: Delay bounded chaining of serverless functions

where they are deployed. As the delay bound reduces to 42
seconds, COSE starts increasing the memory available to the
second function. At around 24 seconds of delay bound, COSE
cannot keep both functions on the core-cloud to meet the
delay requirement. As shown by arrow 1, COSE moves the
first function to the edge-cloud and decreases the memory
needed for the second function on the core-cloud. As the delay
bound becomes even smaller, COSE moves both functions to
the edge-cloud as shown by arrow 2 at around 15 seconds.
Since the edge-cloud has lower delays, COSE selects smaller
memory values, compared to previous values, to minimize the
cost while fulfilling the delay requirement.

In Figure 9c, we look at the actual delay experienced by
the chain. COSE meets the delay requirement of the chain
under most delay bounds. When the delay bound is higher
than 42 seconds, we do not see an increase in the actual delay
experienced by the chain because at the optimal configura-
tions, the chain’s total delay is 42 seconds. As explained in
Section IV, COSE uses its estimation of delays in selecting
the configurations of the serverless functions in the chain. It
is critical that the predicted delay is close to the actual delay.
Figure 9d shows that the actual delay experienced by the chain
is very close to the delay predicted by COSE.

VII. RelatedWork

As serverless computing is gaining popularity, there has
been a significant body of research that measures different
aspects of the serverless paradigms [20], [21]. Detailed studies
on different commercial serverless platforms aim to character-
ize and understand the architecture and resource management
by the cloud provider [9], [22], [23]. With a better insight into
the cloud provider’s serverless platform, users can tailor their
applications to efficiently use the cloud provider. In COSE,
our focus is on modeling the application behavior at different
configurations, regardless of the underlying architecture and
resource management scheme used by cloud providers.

Commercial cloud providers have developed systems that
suggest suitable configuration parameters to the user for
running her tasks. Google provides a machine type recom-
mendation system [24] that helps to maximize the resource
utilization of user VM instances. AWS provides auto-scaling
service [25] to the users for EC2 instances. Cloud provider’s
cluster managing systems, such as Google’s Borg [26], Mesos
[27], Paragon [28] and Quasar [29], allow the user to specify

the need for the application and the system finds the best con-
figuration. Currently, cloud providers do not provide a resource
configuration facility for serverless computing. Moreover, to
port any of these techniques to serverless computing, the user
(or service provider) needs the complete knowledge of the
underlying cloud infrastructure. Since this information is not
available to the user/SP, these techniques cannot be applied by
the user/SP for serverless computing.

Systems have been developed for users to infer
cost/performance across different cloud configurations.
CherryPick [30] uses Bayesian Optimization to predict a
suitable VM configuration for an application to run by a
cloud provider. CloudCmp [31] recommends a suitable cloud
provider for running a user application. Both CherryPick
and CloudCmp are offline tools that are helpful to users
before they deploy their applications. Ernest [32] builds the
performance model of machine learning applications. WebPerf
[33] estimates the latency model of a web application. ARIA
[34] builds the job profile and performance model for
MapReduce and Hadoop applications. Unlike prior work
that focuses on a particular application or on configuring
resources beforehand, i.e. before execution/deployment, the
COSE framework can be used for any application running as
a serverless function and can adapt configurations on the fly.

VIII. Conclusion and FutureWork
We presented COSE, a statistical learning based configu-

ration finder for serverless functions. COSE uses Bayesian
Optimization to learn the cost and execution time model
for serverless functions across unseen configuration values.
It supports function chaining, and has the ability to adapt
to changes in the execution time of serverless functions. Our
results on commercial cloud and simulated distributed cloud
environments show that COSE provides optimal/near-optimal
configurations for serverless functions in a few samples.

Future work includes the deployment of COSE as a service
over larger scale multi-cloud providers. This will enable study-
ing a wide range of workloads, application requirements, and
cloud resource provisioning and pricing policies. We intend to
extend our COSE simulator to accommodate more complex
scenarios, such as service graphs. Note that although we
did not test COSE for functions with wildly varying input
workload, we believe COSE can be used for such scenarios if
the input workload can be classified (e.g., based on size) and
COSE is trained for each class separately.
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